

Manual

Dynaforce Demo Kit – Reference Manual

This reference manual describes the calibration and fine tuning of the *Dynaforce* modules. Make sure the *DesignStudio* is already installed on your computer. If not, please refer to the *Demo Kit - Quick Start Guide* for installation instructions.

Version: 2022-05-17 Company: Algra tec AG

Author: Niederberger Thomas

History

Change Date	Author	Description
2019-02-21	NiT	Initial version
2022-05-17	NiT	Update with protocol V2

Content

1.	Calibrat	ion procedure	. 2
	1.1	Calibration (step-by-step)	
	1.2	Guard sensors.	
	1.3	Verifying the calibration	٠. ت
2.	Using th	ne DF006 - 4KeyModule	
	2.1	How to laminate the module behind your front panel	. 4
	2.2	How to use the module together with DesignStudio	
	2.3	Customer Connector	
	2.4	Fine Tuning behind your front without DesignStudio	
	2.5	Dimensional drawing: units in mm – print in scale 100%	. 6
3.	DFI – Dv	naforce Interface (Protocol version V1)	7
	3.1	Reading a key press	
	3.2	Reading force values	
	3.3	Reading raw values	. 9
	3.4	Setting the LEDs	
	3.5	Enable/disable acoustic feedback	10
	3.6	Enable/disable haptic feedback	11
	3.7	Enable/disable optic feedback	11
	3.8	Enable/disable key state on change	
	3.9	Reading of Serial Number	
	3.10	Saving the parameters permanently	13
4.	DFI – Dy	naforce Interface (Protocol version V2)	14
	4.1	Reading the bus address	
	4.2	Setting the bus address	16
	4.3	Reading a key press	16
	4.4	Reading force values	17
	4.5	Reading raw values	
	4.6	Setting the LED color for the inactive State	19
	4.7	Presetting the LED color for the active State	
	4.8	Setting the LED color	
	4.9	Reading of Serial Number	
	4.10	Saving the parameters permanently	21

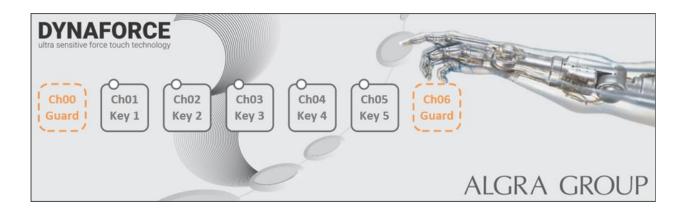
1. Calibration procedure

The demo board is already calibrated and there is no need to recalibrate it. Nevertheless, in this chapter the calibration procedure is described step-by-step.

The basic idea of the calibration is to press each key with a force of 3 Newton (N). Based on these signals an algorithm calculates the sensitivity and the pattern for each channel. For this purpose a stick with a spring loaded pin is supplied (3N stick). If pushed to the mechanical stop, a force of 3 N is applied to the surface below.

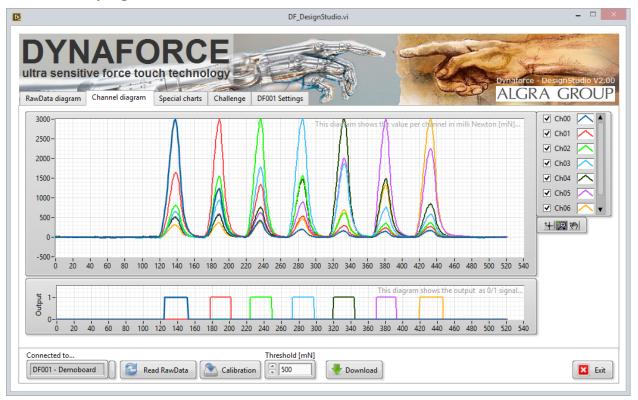
1.1 Calibration (step-by-step)

- 1. Connect your Dynaforce demo board and start Dynaforce DesignStudio
- 2. Select the Channel diagram view.
- 3. Click on Read RawData to start uploading the raw data.
- 4. Press with the 3N stick on every key including the guards (see below).
- 5. Stop Read RawData by releasing the button.
- 6. Click on the button Calibration for executing the calibration process.
- 7. Click on the button *Download* for downloading the parameters to the board.



Important:

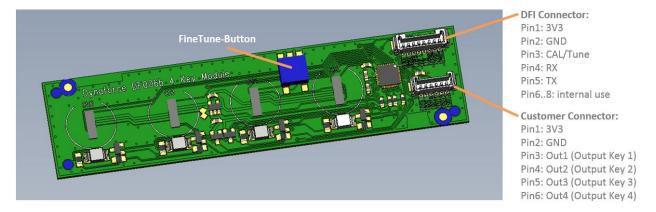
If you miscalibrated the board (e.g. you forgot to press on the guard sensors), just disconnect the board and the original parameters will be reloaded.


1.2 Guard sensors

On the demo board we use two guard sensors (Ch00, Ch06). These sensors help in defining the key press area for the nearby keys. So a strong pressure applied to the left or right of the keys can be detected by the guard sensors and filtered out by the algorithm.

Trimada

1.3 Verifying the calibration


After calibration, the calibrated sensor values are visualized in the upper graph of the tab *Channel diagram*. In the lower graph, the corresponding digital output signals are plotted.

TRIMADA electronic systems

2. Using the DF006 – 4KeyModule

These 4 key modules are ready-to-use and made for a fast and easy integration of the Dynaforce technology behind your front panel.

The modules are already factory calibrated. But the calibration parameters may change depending on the front panel material. In this chapter we explain how to laminate and fine tune the board to your front panel material.

2.1 How to laminate the module behind your front panel

- 1. Clean the front material using a lint-free wipe and solvent. The mounting surface has to be flat and free of any oil residue.
- 2. **Peel off the liner** on the backside of the keyboard module.
- 3. Stick the module to your cleaned and dry front panel.
- 4. **Press** the module to the front panel. Specifically press around the sensor area (designated by the circles) to firmly laminate the module to the front panel. You may use the supplied lamination stick.

2.2 How to use the module together with DesignStudio

The module comes with a standard interface, called Dynaforce Interface (DFI). Use the supported DFI cable to connect the board to your computer.

Start the *Dynaforce DesignStudio* and choose the ComPort and the *DF006 – 4keyModule* in the dialog appearing on start up.

If you need any help, please refer to the supplied *Demo Kit - Quick Start Guide* for installation instructions and first step instructions...

After connecting the 4 key modules you have full access to the board. For example, the module can be calibrated (see above) or the threshold for the key activation force can be set.

After setting the parameters just click on Download to send the new parameters to the board.

Important: If you want to save the parameters permanently you have to activate the small button next to *Download* prior to downloading.

Important: Please note that *DF006 - 4keyModule* can not handle the uploading of data in DesignStudio and the calculation of the algorithm at the same time. During upload, the integrated LEDs do not indicate the status of the buttons.

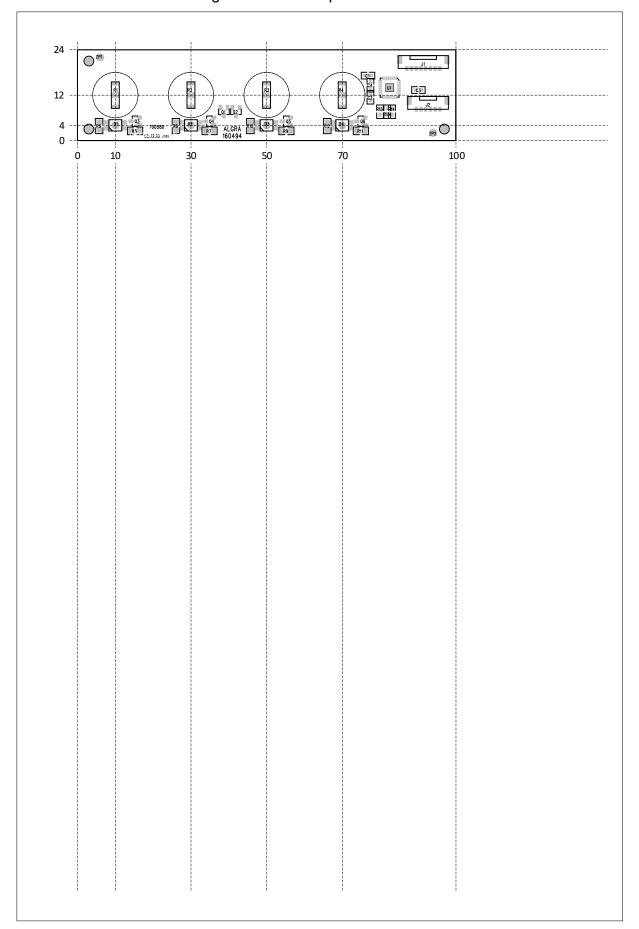
2.3 Customer Connector

Next to the standard DFI connecter on the *DF006 – 4keyModule* is a second connector. This connector is the digital interface to the customer application.

For the *DF006 – 4keyModule* we have chosen a very straight forward digital interface. The board is powered up with 3.3 VDC and a key press generates a high signal (3.3 VDC) on the corresponding output pin.

2.4 FineTuning behind your front without DesignStudio

In addition to the calibration procedure with *DesignStudio* there is a second way to fine tune your board behind your front panel without the need for *DesignStudio*. This might be useful during production in your assembly line.

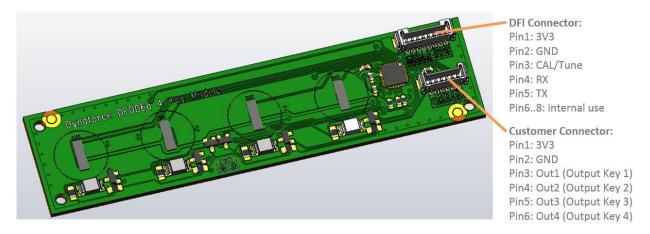

The basic idea of *FineTuning* is to press each key with a *3N stick*. Based on these signals an algorithm calculates the sensitivity and the pattern for each channel according to the thickness and stiffness of your front material. The FineTuning is implemented on DF006b onwards.

FineTuning procedure (step-by-step):

- 1. **Power Up** the module with 3.3 Vdc by using the *DFI Connector* or the *Customer Connector*.
- 2. **Start FineTuning** by pushing the *FineTune-Button*. The LEDs will turn orange.
- 3. Wait until the orange LEDs turn off.
- 4. Press each key with the 3N stick.
- 5. To end the *FineTuning* procedure, **press the** *FineTune-Button* **again**. If the FineTuning is successful, the LEDs turn to green. Otherwise they turn to red.

Trimada

2.5 Dimensional drawing: units in mm – print in scale 100%



Trimada

3. DFI – Dynaforce Interface (Protocol version V1)

Standard modules come with a serial interface. An easy way to connect the board to your computer is to use the supported DFI cable or you can directly use the RX/TX lines.

Protocol version V1 means UART (Rx/Tx) communication. V1 is a simple protocol without the possibility to address multiple boards (no address byte).

Data structure of protocol version V1:

Data Structure	e of protocol version vi.
Byte	Comment
1	Start char - 0x02
2	Lenght - Number of data bytes as ascii - i.e. 2 bytes à 0x3032
1	Command Id
0 - 255	data
1	End char - 0x03

Configuration of COM port:

oungaranon or oom poru		
Command	Data	
Baudrate	57600	
Data bits	8	
Parity	none	
Stop bit	1	

The Dynaforce board will acknowledge a command as follow:

j	o would trill do along a community do lone in
Command	Data
NOK	02 3030 00 03
OK	02 3030 01 03

TRIMADA electronic systems

3.1 Reading a key press

This command enables you to read the key press state for each channel as Off/On.

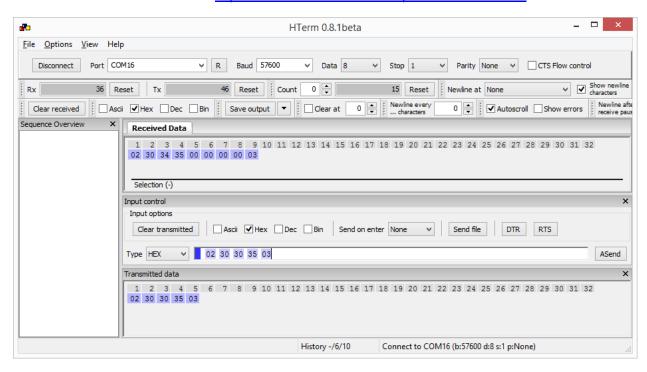
Request command in hex:

02 3030 35 03

Structure of received data:

<STX><Length><ID><Ch00><Ch01><Ch02>...<ETX>

Element	Byte	Comment
<stx></stx>	1	Start char - 0x02
<length></length>	2	Number of data bytes as ascii - i.e. 8 bytes → 0x3038
<id></id>	1	0x35 for this command
[Chxx]	n	Output per channel as byte - 0x00=Off, 0x01=On
<etx></etx>	1	End char - 0x03


Example for DF001 - DemoBoard: 7 keys

Command	Data
02 3037 35 00 00 00 00 00 01 00 03	Ch05=0n

Example for DF006 - 4keyModule: 4 keys

Command	Data	
02 3034 35 00 00 01 00 03	Ch02=0n	

Below you find a print screen using HTerm as a terminal program and a DF006 board. HTerm can be downloaded under https://www.heise.de/download/product/hterm-53283.

Trimada

3.2 Reading force values

This command enables you to read the applied force for each channel.

Important:

This command will be ignored if the hardware doesn't support this feature.

Request command in hex:

02 3030 33 03

Structure of received data:

<STX><Length><ID><Ch00><Ch01><Ch02>...<ETX>

Element	Byte	Comment
<stx></stx>	1	Start char - 0x02
<length></length>	2	Number of data bytes as ascii - i.e. 8 bytes → 0x3038
<id></id>	1	0x33 for this command
[Chxx]	n	Value per channel as int16 - corresponds to the applied force [mN]
<etx></etx>	1	End char - 0x03

Example for DF006 - 4kevModule:

Example for Brood Troymout	
Command	Data
Request	02 3030 33 03
Answer	02 3038 33 <mark>0BA7 04CE 00E9 FFB2 0</mark> 3
Force value in [mN]	<ch00> <mark>0BA7 →</mark> 2983mN</ch00>
	<ch01> <mark>04CE →</mark> 1230mN</ch01>
	<ch02> <mark>00E9 →</mark> 233mN</ch02>
	<ch03> FFB2 → -78mN</ch03>

3.3 Reading raw values

This command enables you to read the raw value (ADC 24bit) of each channel. Calculation: U (ADC) [mV] = ((ADC / 2^24) * (2 * 1158 [mV])) - 1158 [mV]

Important:

This command will be ignored if the hardware doesn't support this feature.

Request command in hex:

02 3030 30 03

Structure of received data:

<STX><Length><ID><Ch00><Ch01><Ch02>...<ETX>

Element	Byte	Comment
<stx></stx>	1	Start char - 0x02
<length></length>	2	Number of data bytes as ascii – i.e. 16 bytes → 0x3130
<id></id>	1	0x30 for this command
[Chxx]	n	Value per channel as uint32
<etx></etx>	1	End char - 0x03

Example for DF006 - 4keyModule:

Example for Brook They mode	
Command	Data
Request	02 3030 30 03
Answer	02 3130 30 0081 2D15 0076 5CB8 0070 DBE3 0070 6435 03
raw value (ADC 24bit)	<ch00> 0081 2D15 → 8465685 → 10.5 mV</ch00>
	<ch01> 0076 5CB8 → 7756984 → -87.2 mV</ch01>
	<ch02> 0070 DBE3 → 7396323 → -137.0 mV</ch02>
	$<$ Ch03 $>$ $\frac{0070}{6435}$ \rightarrow 7365685 \rightarrow -141.2 mV

3.4 Setting the LEDs

This command enables you to set the RGB value for each LED. The command will be ignored if the hardware doesn't support this feature.

Command Structure: <STX><Length><ID><Chxx><R><G><ETX>

Element	Byte	Comment
<stx></stx>	1	Start char - 0x02
<length></length>	2	Number of data bytes as ascii – i.e. 4 bytes → 0x3034
<id></id>	1	0x53 for this command
<chxx></chxx>	1	LED channel number as byte - Use 0xFF for setting all LEDs at once
<r></r>	1	0x00 to 0xFF for red LED intensity
<g></g>	1	0x00 to 0xFF for green LED intensity
	1	0x00 to 0xFF for blue LED intensity
<etx></etx>	1	End char - 0x03

Example for DF001 - DemoBoard:

Command	Data
Setting LED of Ch03 to full red	02 3034 53 <mark>03 FF 00 00</mark> 03
Setting all LEDs to green	02 3034 53 FF 00 FF 00 03

Note:

- DF001/DF006 use bicolor LEDs. So, only green and red is supported.
- DF006: This functionality is implemented in FW_Version 2021-03-17 and later
- DF006: Hardware supports only LED ON/OFF no PWM

Following command gives the LED control back to the Dynaforce board:

02 3031 52 01 03

3.5 Enable/disable acoustic feedback

This command enables/disables the acoustic feedback if the hardware supports this feature.

Command Structure:

<STX><Length><ID><Data><ETX>

Element	Byte	Comment
<stx></stx>	1	Start char - 0x02
<length></length>	2	Number of data bytes as ascii - i.e. 1 bytes → 0x3031
<id></id>	1	0x50 for this command
<data></data>	1	0x01 for enable - 0x00 for disable
<etx></etx>	1	End char - 0x03

Example for DF001 - DemoBoard:

Command	Data
Enabling acoustic feedback	02 3031 50 <mark>01</mark> 03
Disabling acoustic feedback	02 3031 50 <mark>00</mark> 03

3.6 **Enable/disable haptic feedback**

This command enables/disables the haptic feedback if the hardware supports this feature.

Command Structure:

<STX><Length><ID><Data><ETX>

Element	Byte	Comment
<stx></stx>	1	Start char - 0x02
<length></length>	2	Number of data bytes as ascii – i.e. 1 bytes → 0x3031
<id></id>	1	0x51 for this command
<data></data>	1	0x01 for enable - 0x00 for disable
<etx></etx>	1	End char - 0x03

Example for DF001 - DemoBoard:

Command	Data
Enabling haptic feedback	02 3031 51 <mark>01</mark> 03
Disabling haptic feedback	02 3031 51 <mark>00</mark> 03

3.7 **Enable/disable optic feedback**

This command enables/disables the optic feedback for all channels if the hardware supports this feature.

Command Structure:

<STX><Length><ID><Data><ETX>

Element	Byte	Comment
<stx></stx>	1	Start char - 0x02
<length></length>	2	Number of data bytes as ascii - i.e. 1 bytes → 0x3031
<id></id>	1	0x52 for this command
<data></data>	1	<pre>0x01 for enable (LED control through Dynaforce module) 0x00 for disable (LED control through serial interface)</pre>
<etx></etx>	1	End char - 0x03

Example for DF001 - DemoBoard:

Command	Data
Enabling optic feedback	02 3031 52 <mark>01</mark> 03
Disabling optic feedback	02 3031 52 <mark>00</mark> 03

3.8 Enable/disable key state on change

This command enables/disables the sending of the key state on change. When enabled the key state will be sent without the need of polling continuously. The key state will be sent at the rising and falling edge of the key.

Enable command in hex:

02 3031 11 03

Disable command in hex:

02 3031 12 03

The enable/disable command will be answered by:

Ok: 02 3030 01 03 Nok: 02 3030 00 03

Structure of received data after the change of key state:

<STX><Length><ID><Chxx><State><ETX>

Element	Byte	Comment
<stx></stx>	1	Start char - 0x02
<length></length>	2	Number of data bytes as ascii - i.e. 2 bytes → 0x3032
<id></id>	1	0x13 for this command
[Chxx]	1	Output channel number as byte
[State]	1	Key state as a byte - 0x00=0ff, 0x01=0n
<etx></etx>	1	End char - 0x03

Example:

Command	Data
02 3032 13 <mark>05 01</mark> 03	Ch05=On → signals the rising edge of channel 05
02 3032 13 <mark>05 00</mark> 03	Ch05=Off → signals the falling edge of channel 05

3.9 Reading of Serial Number

This command enables you to read the Serial Number.

Request command in hex:

02 3030 22 03

Structure of received data:

<STX><Length><ID><Data><ETX>

Element	Byte	Comment
<stx></stx>	1	Start char - 0x02
<length></length>	2	Number of data bytes as ascii – 10 bytes → 0x3041
<id></id>	1	0x22 for this command
[Data]	10	Serial Number in Ascii – Format: YYWWNNNNNN
<etx></etx>	1	End char - 0x03

Example:

Command	Data
Request	02 3030 22 03
Answer	02 3041 22 3231 3132 3030 3030 3935 03
Serial Number	$\frac{3231}{} \rightarrow YY \rightarrow 21 \text{ (year 2021)}$
	3132 \rightarrow WW \rightarrow 12 (week 12)
	3030 3030 3935 \rightarrow NNNNNN \rightarrow 95 (current number in week)

3.10 Saving the parameters permanently

This command enables you to save the parameters permanently to the board. Without this command, the changed parameters will be lost after power down/up.

Command Structure: <STX><Length>06<ETX>

Example

Command	Data
Save	02 3030 06 03

4. DFI – Dynaforce Interface (Protocol version V2)

Many modules (i.e LeanLine boards) come with a serial interface of protocol version V2. An easy way to connect the board to your computer is to use the supported DFI cable or you can directly use the RX/TX lines.

Protocol version V2 means UART (Rx/Tx) communication. V2 is a simple protocol with the possibility to address multiple boards per address byte. Further the communication is secured by a checksum.

Data structure and checksum definition of protocol version V2:

Byte	Comment		
1	Start char - 0x02		
2	Lenght - Number of data bytes as ascii - i.e. 2 bytes -> 0x3032		
1	BusAddress <adr>. 0x00: Default - 0xFF: Broadcast (module answers always and with it's BusAddress)</adr>		
1	Command Id		
0 - 255	data		
1	CheckSum <chk> Generate Chk: Two's complement of byte addition from <lenght> to <data> Verify Chk: byte addition from <lenght> to <chk> shall be zero Example: 02 3036 00 20 4446 3030 3161 FE Link: https://en.wikipedia.org/wiki/Intel_HEX</chk></lenght></data></lenght></chk>		

Configuration of COM port:

Command	Data
Baudrate	57600
Data bits	8
Parity	none
Stop bit	1

The Dynaforce board will acknowledge a command as follow:

Tilo Dyllaio	i oo boara wiii adaalo wadago a oo iiiniana ao iono w.
Command	Data
NOK	02 3030 <adr> 00 <chk></chk></adr>
OK	02 3030 <adr> 01 <chk></chk></adr>

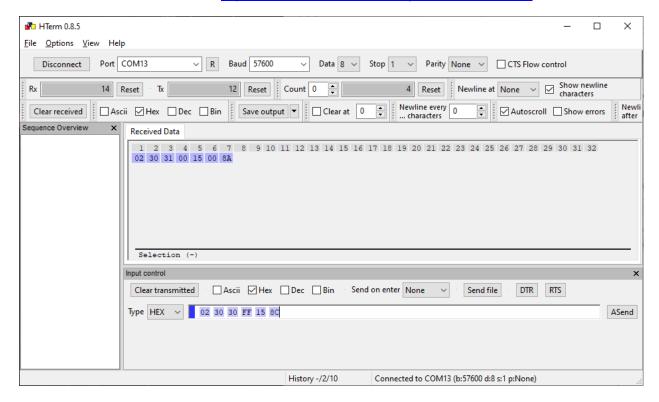
4.1 Reading the bus address

This command enables you to read the bus address of a single board. It is important that only one board is connected to the host. This command is only used if you are unsure of its board address. To get an answer from one board with an unknown bus address, the bus address 0xFF can be used.

Request command in hex:

02 3030 FF 15 <Chk>

Structure of received data:


<STX><Length><Adr><ID><Data><Chk>

Element	Byte	Comment
<stx></stx>	1	Start char - 0x02
<length></length>	2	Number of data bytes as ascii – i.e. 8 bytes → 0x3038
<adr></adr>	1	Bus address of the connected board
<id></id>	1	0x15 for this command
<data></data>	1	Data - for this command data is equal to bus address
<chk></chk>	1	Checksum (see above)

Example for LL004 – LeanLine board: 4 keys

Command	Data
Request	02 3030 FF 15 8C
Answer	02 3031 <mark>00</mark> 15 00 8A
	In this example the bus address of the connected board is 0x00.

Below you find a print screen using HTerm as a terminal program and a LL004 – LeanLine board. HTerm can be downloaded under https://www.heise.de/download/product/hterm-53283.

4.2 Setting the bus address

This command enables you to set the bus address of a board.

Command Structure: <STX><Length><Adr><ID><NewAdr><Chk>

Element	Byte	Comment
<stx></stx>	1	Start char - 0x02
<length></length>	2	Number of data bytes as ascii – i.e. 1 bytes → 0x3031
<adr></adr>	1	Bus address of the connected board
<id></id>	1	0x15 for this command
<newadr></newadr>	1	New bus address for the connected board
<chk></chk>	1	Checksum (see above)

Example for LL004 - LeanLine board: 4 keys with bus address 0x00

Command	Data
Setting a board with bus address 0x00 to bus address 0x0D	02 3031 00 15 <mark>0D</mark> 7D
The board answers with OK-Message and the new bus address 0x0D	02 3030 <mark>0D</mark> 01 92

Important:

With this example you set the bus address to 0x0D. For the examples below the bus address 0x00 is used. So, it's best to set the bus address back to 0x00 before proceeding.

4.3 Reading a key press

This command enables you to read the key press state for each channel as Off/On.

Request command in hex:

02 3030 <Adr> 35 <Chk>

Structure of received data:

<STX><Length><Adr><ID><Ch00><Ch01><Ch02>...<Chk>

Element	Byte	Comment
<stx></stx>	1	Start char - 0x02
<length></length>	2	Number of data bytes as ascii – i.e. 4 bytes → 0x3034
<adr></adr>	1	Bus address of the connected board
<id></id>	1	0x35 for this command
[Chxx]	n	Output per channel as byte - 0x00=Off, 0x01=On
<chk></chk>	1	Checksum (see above)

Command	Data
Request	02 3030 <mark>00</mark> 35 6B
Answer	02 3034 00 35 00 00 01 00 66
	Ch03=0n

4.4 Reading force values

This command enables you to read the applied force for each channel.

Important:

This command will be ignored if the hardware doesn't support this feature.

Request command in hex:

02 3030 <Adr> 33 <Chk>

Structure of received data:

<STX><Length><Adr><ID><Ch00><Ch01><Ch02>...<Chk>

Element	Byte	Comment
<stx></stx>	1	Start char - 0x02
<length></length>	2	Number of data bytes as ascii - i.e. 8 bytes → 0x3038
<adr></adr>	1	Bus address of the connected board
<id></id>	1	0x33 for this command
[Chxx]	n	Value per channel as int16 - corresponds to the applied force [mN]
<chk></chk>	1	Checksum (see above)

Command	Data
Request	02 3030 00 33 6D
Answer	02 3038 33 00 0BA7 04CE 00E9 FFB2 47
Force value in [mN]	<ch00> <mark>0BA7 →</mark> 2983mN</ch00>
	<ch01> <mark>04CE</mark> → 1230mN</ch01>
	<ch02> <mark>00E9 →</mark> 233mN</ch02>
	<ch03> FFB2 → -78mN</ch03>

4.5 Reading raw values

This command enables you to read the raw value (ADC 24bit) of each channel. Calculation: U (ADC) $[mV] = ((ADC / 2^24) * (2 * 1158 [mV])) - 1158 [mV]$

Important:

This command will be ignored if the hardware doesn't support this feature.

Request command in hex:

02 3030 <Adr> 30 <Chk>

Structure of received data:

<STX><Length><Adr><ID><Ch00><Ch01><Ch02>...<Chk>

Element	Byte	Comment
<stx></stx>	1	Start char - 0x02
<length></length>	2	Number of data bytes as ascii - i.e. 16 bytes → 0x3130
<adr></adr>	1	Bus address of the connected board
<id></id>	1	0x30 for this command
[Chxx]	n	Value per channel as uint32
<chk></chk>	1	Checksum (see above)

	boards they of their baro datas over the control
Command	Data
Request	02 3030 00 30 70
Answer	02 3130 00 30 0081 2D15 0076 5CB8 0070 DBE3 0070 6435 EB
raw value (ADC 24bit)	<ch00> <mark>0081 2D15 →</mark> 8465685 → 10.5 mV</ch00>
	<ch01> 0076 5CB8 → 7756984 → -87.2 mV</ch01>
	<ch02> <mark>0070 DBE3 →</mark> 7396323 → -137.0 mV</ch02>
	<ch03> 0070 6435 → 7365685 → -141.2 mV</ch03>

4.6 Setting the LED color for the inactive State

This command enables you to set the inactive LED color.

The command will be ignored if the hardware doesn't support this feature.

Command Structure: <STX><Length><Adr><ID><Ch00><Ch01>...<Chxx><Chk>

Element	Byte	Comment
<stx></stx>	1	Start char - 0x02
<length></length>	2	Number of data bytes as ascii – i.e. 4 bytes → 0x3034
<adr></adr>	1	Bus address of the connected board
<id></id>	1	0x55 for this command
<chxx></chxx>	1	RGB value for each channel as u32 <00RRGGBB>
<chk></chk>	1	Checksum (see above)

Example for LL004 - LeanLine board: 4 keys with bus address 0x00

Command	Data
Setting inactive color for all LEDs to full green	02 3100 00 55 00 00 FF 00 00 00 FF 00 00 00 FF 00 00 00 FF 00 7E
Setting inactive color for all LEDs to 10% white	02 3100 00 55 00 19 19 19 00 19 19 19 00 19 19 19 00 19 19 4E

4.7 Presetting the LED color for the active State

This command enables you to set the active LED color.

The command will be ignored if the hardware doesn't support this feature.

Command Structure: <STX><Length><Adr><ID><Ch00><Ch01>...<Chxx><Chk>

Element	Byte	Comment
<stx></stx>	1	Start char - 0x02
<length></length>	2	Number of data bytes as ascii – i.e. 4 bytes → 0x3034
<adr></adr>	1	Bus address of the connected board
<id></id>	1	0x54 for this command
<chxx></chxx>	1	RGB value for each channel as u32 <00RRGGBB>
<chk></chk>	1	Checksum (see above)

Command	Data
Setting active color for all LEDs to full green	02 3100 00 54 00 00 FF 00 00 00 FF 00 00 00 FF 00 00 00 FF 00 7F
Setting active color for all LEDs to 10% white	02 3100 00 54 00 19 19 19 00 19 19 19 00 19 19 19 00 19 19 19 4F

4.8 **Setting the LED color**

This command enables you to set the RGB value for each LED. The command will be ignored if the hardware doesn't support this feature.

Command Structure: <STX><Length><Adr><ID><Chxx><R><G><ETX>

Element	Byte	Comment
<stx></stx>	1	Start char - 0x02
<length></length>	2	Number of data bytes as ascii – i.e. 4 bytes → 0x3034
<adr></adr>	1	Bus address of the connected board
<id></id>	1	0x53 for this command
<chxx></chxx>	1	LED channel number as byte - Use 0xFF for setting all LEDs at once
<r></r>	1	0x00 to 0xFF for red LED intensity
<g></g>	1	0x00 to 0xFF for green LED intensity
	1	0x00 to 0xFF for blue LED intensity
<chk></chk>	1	Checksum (see above)

By default, the LEDs are controlled by the Dynaforce firmware. To enable the setting of the LED color by serial communication, you must send following command:

Give control over LED to serial communication	02 3031 00 52 00 4D
Give control over LED to Dynaforce firmware	02 3031 00 52 01 4C

Example for LL004 - LeanLine board: 4 keys with bus address 0x00

Command	Data
Give control over LED to serial communication	02 3031 00 52 00 4D
Setting LED of Ch03 to full red	02 3034 00 53 <mark>03 FF 00 00</mark> 47
Setting all LEDs to green	02 3034 00 53 FF 00 FF 00 4B
Give control over LED to Dynaforce firmware	02 3031 00 52 01 4C

4.9 **Reading of Serial Number**

This command enables you to read the Serial Number.

Request command in hex:

02 3030 <Adr >22 <Chk>

Structure of received data:

<STX><Length><Adr><ID><Data><Chk>

Element	Byte	Comment
<stx></stx>	1	Start char - 0x02
<length></length>	2	Number of data bytes as ascii – 10 bytes → 0x3041
<adr></adr>	1	Bus address of the connected board
<id></id>	1	0x22 for this command
[Data]	10	Serial Number in Ascii – Format: YYWWNNNNNN
<chk></chk>	1	Checksum (see above)

Example for LL 004 - LeanLine board: 4 keys with bus address 0x00:

Example for EE004	Eculiality bould. 4 hoys with bus address oxou.
Command	Data
Request	02 3030 00 22 7E
Answer	02 3041 00 22 3231 3132 3030 3030 3935 79
Serial Number	$\frac{3231}{} \rightarrow YY \rightarrow 21 \text{ (year 2021)}$
	3132 \rightarrow WW \rightarrow 12 (week 12)
	3030 3030 3935 \rightarrow NNNNNN \rightarrow 95 (current number in week)

4.10 Saving the parameters permanently

This command enables you to save the parameters permanently to the board. Without this command, the changed parameters will be lost after power down/up.

Command Structure: <STX><Length><Adr>06<Chk>

Element	Byte	Comment
<stx></stx>	1	Start char - 0x02
<length></length>	2	Number of data bytes as ascii – i.e. 0 bytes → 0x3030
<adr></adr>	1	Bus address of the connected board
<id></id>	1	0x06 for this command
<chk></chk>	1	Checksum (see above)

Example for LL004 - LeanLine board: 4 keys with bus address 0x00:

Command	Data	
Save	02 3030 00 06 9A	